Utilization of Cellulose Oligosaccharides by \textit{Cellvibrio gilvus}

MARION L. SCHAFER1 and KENDALL W. KING

\textit{Department of Biochemistry and Nutrition, Virginia Polytechnic Institute, Blacksburg, Virginia}

Received for publication 19 August 1964

\textbf{Abstract}

SCHAFER, MARION L. (Virginia Polytechnic Institute, Blacksburg), AND KENDALL W. KING. Utilization of cellulose oligosaccharides by \textit{Cellvibrio gilvus}. J. Bacteriol. 89: 113–116. 1965.—The hypothesis that oligosaccharides of the cellulose polymer series can be absorbed by cellulolytic bacteria, prior to hydrolysis to the level of glucose or cellobiose, has been tested. Resting-cell suspensions of \textit{Cellvibrio gilvus} removed oligosaccharides of one to six monomer units from solution at a rate providing the cells with 37×10^4 to 42×10^4 molecules of glucose per cell per minute. There was no concurrent extracellular hydrolysis of the oligosaccharides. The fact that the rate of uptake was constant indicates that an active absorption system is involved. Filtrates from washed-cell suspensions before or after exposure to the oligosaccharides were incapable of hydrolyzing the sugars. In media where the carbohydrate concentration was growth-limiting, the larger members of the oligosaccharide series supported greater final cell densities than the smaller sugars, but there were no recognizable differences in the growth rates during the logarithmic-growth phase.

Recent reviews of microbial utilization of cellulose as an energy and carbon source have considered primarily the extracellular events involved in solubilization of the substrate (Cascoigne and Cascoigne, 1960; King, 1961; Cowling, 1963). Although there are a great many uncertainties regarding the extracellular hydrolysis of cellulose, the notion that the end products for absorption by the cell are glucose or cellobiose is firmly established. Careful review of the literature, however, reveals that degradation to the glucose or cellobiose level prior to absorption is an assumption with no experimental basis.

Because larger chain fragments are demonstrated water-soluble intermediates during cellulose degradation by many microorganisms, the possibility of their absorption, prior to hydrolysis, to glucose or cellobiose seems reasonable. Indeed, the fact that the glucosyl-bond energy is lost to the cell during hydrolysis, but could be conserved by intracellular phosphorylase, makes oligosaccharide absorption seem advantageous. The phosphorylolytic conservation of energy would appear to be particularly likely among bacteria such as \textit{Clostridium thermocellum}, \textit{Ruminococcus flavefaciens} (Sijpsteijn, 1951), and \textit{Cellvibrio gilvus} (Hulcher and King, 1958a) which have been shown to possess an intracellular cellobiose phosphorylase (Ayers, 1958; Sih and McBee, 1955; Hulcher and King, 1958a, b).

In the present report, the ability of \textit{C. gilvus} to absorb and utilize cellulose oligosaccharides as large as the hexasaccharide has been measured directly, and evidence is presented indicating that the absorption and utilization of the oligosaccharides, without prior extracellular hydrolysis, occur at rates which meet the nutrient demands of both resting and growing cells as well as either glucose or cellobiose does.

\textbf{Materials and Methods}

The culture and media used were those described by Hulcher and King (1958a), except that the vitamins were omitted and cellobiose was included at 0.2% (w/v). Routinely and prior to each experiment, the culture was tested for purity by examining Gram-stained smears.

For preparation of resting-cell suspensions, cells from 24-hr broth cultures were washed once by centrifugation ($13,300 \times g$) for 5 min at 25°C in 0.067 M potassium phosphate buffer (pH 7.0). The washed cells were suspended in the same buffer and stirred for 10 min with a magnetic stirrer to disperse clumps. The suspension was diluted with the buffer to give a final Klett-Summerson turbidity value of 260 to the corresponding 260 $\times 10^4$ cells per ml; samples of the diluted suspension were placed in 250-ml Erlenmeyer flasks fitted with cotton stoppers. After a 30-min starvation period at 25°C to reduce endogenous reserves, substrates

1 Present address: Department of Biochemistry, University of Wisconsin, Madison.
sterilized by autoclaving for 15 min at 121 C. The vitamin supplement and cellulodextrins were sterilized by filtration through a 0.45-μm Millipore filter, and added aseptically to the basal medium. Tubes containing 5 ml of the broth were inoculated with 0.1 ml of a dilution (1:50) of a 24-hr broth culture, and incubated at 25° C on a mechanical shaker. Turbidity was measured with a Klett-Summerson colorimeter by use of the green filter. Cell concentrations were then determined by reference to a standard curve established from appropriate dilutions of a 24-hr broth culture, the cell concentration of which had been determined by use of cells stained with crystal violet in a Levy-Hausser hemacytometer.

The cellulodextrins were prepared and purified by the method of Miller, Dean, and Blum (1960) as modified by Storvick, Cole, and King (1968). The glucose was obtained from the National Bureau of Standards.

RESULTS

Absorption of oligosaccharides. A description of the disappearance of cellulodextrins from the medium in the presence of a resting-cell suspension is given in Fig. 1. The rate of disappearance of each oligosaccharide was constant, and decreased as the number of glucose units per molecule increased. To determine the nature and magnitude of extracellular metabolism of the oligosaccharides, filtrates taken from resting-cell suspensions after the 30-min starvation period were incubated with the oligosaccharides in 250-ml Erlenmeyer flasks for 1 hr on a mechanical shaker, and then boiled for 5 min to terminate enzymatic activity. Analyses of these filtrates indicated that no appreciable change in either the concentration of cellulodextrins or in their DP occurred during the incubation. Similarly, there was no detectable change in the DP of the unabsorbed oligosaccharides recovered after incubation of cellulodextrins with cell suspensions for 1 hr. Both sets of control data on DP appear in Table 1.

The experiments measuring oligosaccharide uptake permit calculation of the number of glycosyl moieties metabolized per cell per unit time (Table 2). On a hexose basis, approximately equivalent amounts of each oligosaccharide were absorbed per cell per minute.

Growth response to oligosaccharides. Growth in media containing each of the oligosaccharides is described in Table 3. Although the growth rate in each of the carbohydrate media was essentially the same during the log phase, the final cell densities increased as the DP of the oligosaccharide increased. Subtracting the maximal growth on the carbohydrate-free control medium from the others, and expressing the resulting

TABLE 1. Failure of resting-cell suspensions and filtrates from resting-cell suspensions to alter the degree of polymerization of oligosaccharides

<table>
<thead>
<tr>
<th>Oligosaccharide</th>
<th>Observed degree of polymerization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incubated with cells</td>
</tr>
<tr>
<td></td>
<td>0 hr</td>
</tr>
<tr>
<td>Cellobiose</td>
<td>2.1*</td>
</tr>
<tr>
<td>Cellotriose</td>
<td>3.2</td>
</tr>
<tr>
<td>Cellotetraose</td>
<td>3.9</td>
</tr>
<tr>
<td>Cellopentaoose</td>
<td>5.7</td>
</tr>
<tr>
<td>Cellohexaose</td>
<td>5.5</td>
</tr>
</tbody>
</table>

*Degree of polymerization is the number of glucose moieties per molecule of oligosaccharide.

The graphs and figures for this page are not included in this transcription. They should be present in the original document.
carbohydrate-dependent growth on each sugar as the percentage of the growth on cellobiose, gave values of 68, 85, 85, 86, and 93 % for glucose, cellobiose, cellobiose, cellotriose, cellotetraose, and cellopentaose, respectively.

Discussion
These data demonstrate that oligosaccharides larger than cellobiose are actively removed from a culture medium at a rate which appears to be controlled by the respiration of the cell. The linearity of oligosaccharide uptake (Fig. 1) indicates that the removal is by an active absorption mechanism. If simple diffusion accounted for the disappearance, an exponential curve would be expected. From the control experiment (Table 2), it is evident that the cells are necessary for removal of oligosaccharide, and that there is no β-(1,4)-glucan hydrolase in the medium during the brief incubation times that have been used. That the oligosaccharides were removed intact is confirmed by the constancy of the DP of the oligosaccharides in the presence of cells (Table 2).

The conclusion that the rate of uptake is controlled by the rate of respiration of the cell is indicated by the results in Table 1. Independent of the DP of the carbohydrate, the same number of glucose molecules was removed from the medium per cell per unit time. This behavior is strongly reminiscent of the behavior of Streptococcus faecalis with which Abrams (1960) obtained data indicating that the absorption of starch oligosaccharides was dependent upon the rate of glycolysis.

It is evident (Table 3) that C. gilvus is capable of utilizing the oligosaccharides as sources of energy for growth. Although provided with an equivalent amount of carbohydrate on a hexose basis, the cells were able to metabolize larger dextrins with greater efficiency, suggesting that the degradation of oligosaccharide once absorbed may begin with a phosphorolytic attack. Other factors, however, must be involved in the increasingly efficient utilization of the larger oligosaccharides, because the added energy yield per mole of hexose resulting from phosphorolysis can account for only a small portion of the energy demand to support the marked increases in cell yield.

Acknowledgment
This work was supported in part by Public Health Service grant-in-aid GM-05642 from the National Institutes of Health.

Literature Cited

