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Search for Useful Graph Theoretical Invariants of Molecular Structure 
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We have reexamined several graph theoretical invariants that have been used in the past in 
discussions of structure-property and structure-activity correlations in the search for optimal 
single-variable descriptors for molecular structures. We found that judicious selection of the 
functional form for a correlation can lead to significant improvements in the correlations. The 
approach is illustrated with the connectivity index, the molecular ID number, the Wiener number, 
and the Hosoya topological index. We review the most suitable forms for the considered indices 
for correlations with boiling point. These findings have been further supported by considering 
alternative (polynomial expansion) models. The best results are about 2-3 times better (when 
measured by the magnitude of the standard deviation) than the best considered previously. 

INTRODUCTION 

The starting point in many theoretical considerations con- 
cerns the choice of the basis for the description of the system 
under examination. In quantum chemical computations the 
basis means the selection of the orbitals (atomic) from which 
one builds molecular wave functions, and the orbitals con- 
sidered in the past included Slater-type atomic orbitals, dou- 
ble-zeta STO, Hermite-type extensions of STO, Gaussian 
atomic orbitals and contracted Gaussian sets, Hylaraas or- 
bitals, geminals, etc. In various problems different bases offer 
different advantages, and it is up to the practitioner to select 
the best basis for the problem considered. In mathematical 
and physical computations (including among others the 
evaluation of molecular integrals) one similarly considers 
alternative coordinate systems, and in addition to the more 
common Cartesian and polar coordinates, one may in different 
applications choose between confocal ellipsoidal, confocal 
paraboloidal, conical cylindrical, ellipsoidal, elliptic cylindrical, 
oblate spheroidal, parabolic, parabolic cylindrical, prolate 
spheroidal, or toroidal and of course the even more general 
curvilinear coordinates if the problem warrants. It is generally 
considered advantageous to have such a variety, and one does 
not expect objections if for a selected problem one considers 
yet another coordinate system as more suitable. In contrast, 
when it comes to the problem of describing molecular struc- 
tures and novel molecular descriptors are introduced, one is 
defensive and under pressure not to proliferate yet another 
index or parameter. When a new coordinate system is pro- 
posed, it is done so in connection with solving a particular 
problem, and one expects that the new approach is either 
simpler, adds to the problem some insights, or solves a problem 
that was not solvable with alternative schemes. One does not 
invent a coordinate system for coordinate system’s sake, 
however, and the same prudence must accompany the intro- 
duction of novel structural (and graph theoretical) invariants. 
In Table I we list several graph theoretical invariants, indi- 
cating their origin and structural foundation. Not all the 
invariants, graph theoretical indices, and more general 
mathematical objects (polynomials, sequences) have been used 
as extensively as others. Some, like the connectivity indices, 
have been discussed and applied in hundreds of papers, while 
others have been used very little. The number of uses of a 
single index is not, of course, the best criterion for its evalu- 
ation, but on the other hand the evaluation of indices that have 
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Table I. Selection of Graph Theoretical Indices, Their Origin, and 
Their Structural Foundation 
graph theoretical 

invariant name/symbol comments and ref 
ref 25 path numbers 

nonadjacent bonds 
(matching) 

sum of path 
lengths 

sum over weighted 
bonds 

sum over atom 
weighted paths 

weighed average 
distances 
between atoms 

sum over weighted 
path lengths 

count of bonds 
relative to 
extremes 

generalized 
weighted bonds 
sum 

index (largest) 
eigenvalue 

pruning sequence 
of terminal 
vertices 

count of paths of 
length 2 relative 
to extreme 
isomers 

connectivity 
modified 

Pi 
P ( W  

Z = X d G , k )  
W 

connectivity index x 

higher connectivity 

J 
indices,m 

identification number 
ID 

shape attribute K 

centric index 

ref 3 and 7 

ref 2 

ref 1; based on 
discrimination of 
bond types (m,n) 

ref 26 

ref 12; defined similarly 
to x but distance 
matrix is used 

ref 18; becomes same as 
W if bond weighting 
is eliminated 

ref 21 

ref 21 

ref 14 

ref 13 

higher shape attributes ref 28 
m X  

X’ this work; exponent in 
(mn)k varied 

not been used is hardly warranted. In this paper we critically 
examine a selection of graph theoretical indices to see if they 
offer optimal molecular descriptions, and if not, in which way 
they ought to be modified. The purpose of this paper is not 
to develop a recommendation for any specific index but to 
outline a way of testing indices. By use of the language of 
coordinate systems, this amounts to the outline of an approach 
that can guide one in selecting one or a very few suitable 
coordinate systems for a problem of interest. In analytical 
calculus and its applications, the problem of selection of the 
coordinate system usually does not arise, because all the co- 
ordinate systems (listed above) have simple symmetry prop- 
erties and this usually suffices to make the choice obvious. But 
in structure-property or structure-activity studies it is by no 
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Table 11. Experimental Boiling Points for Lower Alkanes and Predicted Values Based on Simple Linear Regression for the Connectivity Index X, 
Wiener Number W, and Hosoya Topological Index Z (Revised from Ref 4). 

bP RandiE bP Wiener bP Hosoya bP 
compound (obsd), OC index (x) (calcd), O C  no. (W) (calcd) index (Z) (calcd), "C 

ethane -88.63 1 .ooo -70.5 1 1 -36.27 2 -26.16 
propane -42.07 1.414 -40.24 4 -27.97 3 -18.31 
2-methylpropane -1 1.73 1.732 -16.99 9 -14.13 4 -10.46 
n-butane -0.50 1.914 -3.68 10 -1 1.36 5 -2.61 
2,2-dimethylpropane 9.50 2.000 2.61 16 5.24 5 -2.61 
2-methylbutane 27.85 2.270 22.35 18 10.78 7 13.09 
n-pentane 36.07 2.414 32.88 20 16.37 8 20.94 
2,2-dimethylbutane 49.74 2.561 43.63 28 38.46 9 28.79 
2,3-dimethylbutane 57.99 2.643 49.62 29 41.22 10 36.64 

3-methylpentane 63.28 2.808 61.69 31 46.76 12 52.34 
n-hexane 68.74 2.914 69.44 35 57.83 13 60.19 
2,2-dimethylpentane 79.20 3.061 80.19 46 86.57 14 68.04 
2,4-dimethylpentane 80.50 3.126 84.94 48 93.81 15 75.89 
2,2,3-trimethylbutane 80.88 2.943 71.56 42 77.20 1 3  60.19 

2,3-dimethylpentane 89.78 3.181 88.96 46 88.28 17 91.59 

3-methylhexane 91.85 3.308 98.25 50 99.35 19 107.30 
3-ethylpentane 93.48 3.346 101.03 48 93.81 20 115.15 
n- heptane 98.42 3.414 106.00 56 115.92 21 123.00 

2-methylpentane 60.27 2.770 58.91 32 49.53 1 1  44.49 

3,3-dimethylpentane 86.03 3.121 84.58 44 82.74 16 83.74 

2-methylhexane 90.05 3.270 95.47 52 104.88 18 99.44 

correlation coefficient 
estimated standard deviation 

0.9914 
6.746 

0.9432 
17.09 

0.9128 
21.01 

means obvious which index or indices may be best for a 
particular study. The question then is, how should one choose 
among graph descriptors? 

We will consider the boiling points of alkanes, specifically 
all alkanes from C2 to C,, a total of 21 structures. The 
particular property of boiling point is used for illustrative 
purposes only. Our aim is not to suggest a better correlation 
for the boiling points of alkanes (for this it would be advisable 
to enlarge the sample by including octanes, possibly nonanes, 
decanes, etc.). Our aim is to outline the strategy for selecting 
graph theoretical indices (invariants), to examine more closely 
why some give better answers than others, and to seek con- 
ditions that may improve the correlations. 

We start with the connectivity index, x,' the Wiener num- 
ber, W,2 and the Hosoya topological index,3 Z ,  and show in 
Table I1 a comparison of the direct use of these three indices 
for predicting the boiling points of alkanes. Table I1 was 
originally reported in the book by Kier and Hall.4 These 
authors reported the Wiener indexdefined as the sum of the 
Wiener number (W) and the number of carbon atoms sepa- 
rated by three bonds (polarity number p)-but we have used 
the Wiener number alone (W). We have ordered the struc- 
tures in ascending order with respect to their boiling points, 
and inspection of the predicted values for the boiling points 
on the basis of the three descriptors-the connectivity index 
x, W, and 2-shows few discrepancies as to order. Hence, 
if one takes as a criterion the prediction of the order of the 
boiling points of the compounds, all three indices perform 
similarly (with slightly better performance for the connectivity 
index and Z ) .  This is an interesting result in view of the fact 
that the three descriptors have widely different and unrelated 
structural origins. 

The connectivity index, x, assumes bond additivity, with the 
proviso that bonds have different weights so that bonds whose 
terminal atoms have more adjacent neighbors make a smaller 
contribution. The weights are given by (mn)-'/* where m,n 
indicate the number of neighbors (neglecting hydrogens) for 
the terminal carbon atoms. This particular form was adopted 
as it represents a simple solution of a set of inequalities con- 
structed to reproduce the correct ordering of the structures.' 

The Wiener number, W, is one of two parameters introduced 
by Wiener to give correlations with thermodynamical prop- 
erties of alkanes (including boiling points) and other homol- 

ogous compounds (e.g., fatty acids). Hence, its use here is 
somewhat improper since it was not meant to be used alone. 
Nevertheless, it is a well-defined parameter, representing the 
sum of the lengths of all paths in a molecule, where paths are 
counted in their graph theoretical sensee5 Platt6 tried to in- 
terpret Wand suggested that W is a measure of molecular 
volume. The number can be derived from the distance matrixS 
simply as the sum of all distances in a structure, that is, the 
sum of the distances between all pairs of carbon atoms (for 
acyclic structures, such as the alkanes considered here). 

Finally, Hosoya's 2 number is based on a count of nonad- 
jacent bonds. If p(G,k)  represents the number of different 
ways of selecting k nonadjacent bonds in graph G (e.g., a 
structure), then 2 is the sum of p(G,k)  for k equal to zero, 
up to half the number of atoms [by definition, p(G,O) = 1 and 
p ( G , l )  = number of bonds]. This was the first so-called 
topological index (more correctly referred to as a graph the- 
oretical index) that was designed for representing structures. 
Hence, Hosoya was the first to consider the nontrivial problem 
of representing a structure by a single number of structural 
origin. Although originally motivated by the needs of chemical 
documentation, it was immediately recognized for its potential 
in structure-property studies. The numbers p(G,k)  emerged 
in the polynomials that Heilmann and Lieb' constructed in 
statistical mechanics. When k is a maximum, p(G,k)  becomes 
the number of arrangements of dimers on a grid, considered 
explicitly by Fowler and Rushbrooke as early as 1937;* they 
also represent the number of Kekuld valence structures if G 
is a molecular skeleton of a conjugated hydrocarbon. 

It is remarkable that three indices that are so different in 
content and form can reproduce the ordering of the same 
physicochemical property for a group of small alkanes so well. 
It is also remarkable that a single number appears to capture 
some essential structural features, in fact different features 
in each of the three cases, and offers a basis for further 
quantitative correlations. Because the three parameters give 
the same ordering (or nearly the same), one expects that they 
will be mutually correlated. In fact, as Heilbronner and 
Schmelzer9 have pointed out, even random numbers give 
relatively high correlations if one has ordered them prior to 
use. Hence, the correlation between various indices is bound 
to be high for any indices that offer an acceptable ordering 
of structures. There have been several comparative studies 
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of the selection of topological indices showing a high degree 
of mutual correlation,1° afid we will not duplicate this work. 
In passing, we should mention that high intercorrelation does 
not mean that individual indices are related beyond their 
having a dominant component in common. What makes 
indices individual is in how they differ and, in particular, 
whether the differences characterize distinct structural traits. 
It is commonly accepted that "...the presence of serious 
multicollinearity often does not affect the usefulness of the 
fitted model for making inferences about mean responses or 
making predictions, provided that the values of the independent 
variables for which inferences are to be made follow the same 
multicollinearity patterns as the data on which the regression 
model is based"." 

We will now examine Table I1 more closely. Both the 
correlation coefficient and the standard deviation for the simple 
regression with the boiling points are superior for the con- 
nectivity index. But is this particular comparison fully un- 
biased? Clearly, comparing x, W, and Z reveals that the first 
index is associated with a 2-3 times smaller standard deviation. 
However, this by no means disqualifies Wand Z because each 
can be expanded to give better nonlinear or two or three pa- 
rameter expressions. Alternatively, a topological index can 
be combined with other indices, such as was the case in the 
pioneering work of Wiener when he also considered P, the 
number of paths of length three, a measure of crowdedness. 
Hence, all that Table I1 says is that when simple linear re- 
gression is employed, the connectivity index performs best. In 
a way none of the standard deviations of Table I1 (6.746, 
17.09, and 21.01 for x, W, and Z, respectively) are very good 
values, and many of the individual predicted boiling points are 
far too large or too small to be of much use. Can these indices 
be so poor and yet be useful in selected studies? Figure 1 
illustrates the relationships of all three indices to boiling point. 
One can immediately see that all three indices are very rea- 
sonable structural descriptors. By choosing a simple linear 
regression, one distorts the correlative value considerably, and 
one should not pass judgment on the suitability of a particular 
index or even about the preference for one or another. Of 
interest here is the discovery of suitable criteria for the 
evaluation of various indices and, second, the best single-pa- 
rameter expressions. We will first consider the problem of the 
best single-index expression for the correlation with alkane 
boiling points, but with the same restriction imposed in Table 
11; that is, we are looking for the best index for a simple linear 
regression model. 

RANDIC ET AL. 

LINEAR REGRESSION MODEL 

Other graph invariants besides x, W, and Z have been 
reported. Several reviews considered alternative indices, such 
as a generalization of the connectivity index suggested by 
Balaban'* called the distance sum connectivity index, which 
is defined similarly to the connectivity index, except that in- 
stead of m,n (the number of neighbors for the terminal carbon 
atoms of each bond) one considers the extended connectivity 
as derived from the distance matrix. Another index, also due 
to Balaban, is referred to as the centric index and has been 
found to give the best correlation when octane numbers are 
con~idered. '~ The maximal eigenvalue (of the characteristic 
polynomial) is also an index encoding different structural 
traits,14 and average path number provides yet another variable 
of interest for describing molecular s t r ~ c t u r e . ' ~  This list is 
by no means exhaustive, and the number of such indices can 
be doubled by simply using the Shannon16 equation and de- 
riving the information content of each index." Rather than 
following the study of indices that have been reviewed in the 
past, we decided to look for some novel alternatives and 
modifications. 

1.30 I 1 

l a  
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t x  

X * x  
X 

X 
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X 
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X 
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Figure 1. Correlations between the observed boiling points of the 
C2-C, alkanes and (a) the connectivity index, (b) the Wiener number, 
and (c) the Hosoya topological index. Observe the increasing curvature 
for the three correlations that explains the large differences in the 
correlation coefficients ( r )  and the standard deviations (s) shown in 
Table 11. 
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Table 111. Correlation between the Experimental Boiling Points for Cz-C7 Alkanes of Table I1 with (a) the Molecular ID Numbers, (b) the 
Connectivity Indices Based on Shifted Values for the Valencies, and (c) the Connectivity Indices Based on Variations in k ,  the Exponent in 
(mnlko 

compound ID m - 'I2 m + 'I2 m + l  k = -'I3 k - ' / 4  

ethane 3.0000 2.0000 0.6667 0.5000 1 .oooo 1 .oooo 
propane 4.9142 2.3094 1.0328 0.8164 1.5874 1.6817 
2-methylpropane 6.7321 2.6832 1.3092 1.0605 2.0801 2.2795 
n-butane 6.8713 2.9761 1.4328 1.1497 2.2174 2.3889 
2,2-dimethylpropane 8.5000 3.0236 1.5396 1.2648 2.5198 2.8284 
2-methylbutane 8.6968 3.4599 1.7273 1.4039 2.7307 2.9995 
n-pentane 8.8499 3.6428 1.8328 1.4830 2.8473 3.0960 
2,2-dimethylbutane 10.4660 3.8588 1.9692 1.6150 3.1836 3.5568 
2,3-dimethylbutane 10.5236 3.9776 2.03 13 1.6640 3.2542 3.6167 
2-methylpentane 10.6792 4.1266 2.1273 1.7372 3.3607 3.7066 
3-methylpentane 10.6759 4.2366 2.1454 1.7473 3.3814 3.7195 
n-hexane 10.8391 4.3095 2.2328 1.8163 3.4773 3.8031 
2,2-dimethylpentane 12.4490 4.5255 2.3692 1.9483 3.8135 4.2639 
2,4-dimethylpentane 12.5092 4.6104 2.4218 1.9914 3.8741 4.3172 
2,2,3-trimethylbutane 12.2931 4.3946 2.2795 1.8792 3.7134 4.1782 
3,3-dimethylpentane 12.4427 4.6892 2.3988 1.9652 3.8473 4.2852 
2,3-dimethylpentane 12.5052 4.7543 2.4494 2.0074 3.9049 4.3367 
2-methylhexane 12.6704 4.7933 2.5273 2.0705 3.9907 4.4137 
3-methylhexane 12.6600 4.9033 2.5454 2.0806 4.01 14 4.4266 

n-heptane 12.8338 4.9762 2.6328 2.1496 4.1072 4.5102 

correlation coefficient 0.9920 0.9826 0.9937 0.9948 0.9953 0.9948 

3-ethylpentane 12.6692 5.0133 2.5635 2.0907 4.0321 4.4395 

standard deviation 6.496 9.532 5.748 5.201 5.003 5.217 
"Observe some improvement in r (correlation coefficient) and s (the standard deviation) for selected case if compared to Table 11. 

First, we consider the molecular ID (identification) num- 
ber,I8 introduced not only as a discriminating number that can 
be assigned to a s t r u ~ t u r e ' ~  but also as number of interest in 
structureactivity work.m The molecular ID is defined as the 
sum of weighted path numbers, with the same weights used 
for the connectivity index. If one restricts the summation to 
paths of length 1, one would obtain the connectivity index x. 
If all the weights were 1 .OOOO, the sum would give the Wiener 
number W. Hence, molecular ID numbers combine and bridge 
two of the graph invariants already considered, and it is of 
interest to see what happens when these numbers are used. 
The correlation between molecular ID and boiling point is 
depicted in Figure 2 and should be compared with the cor- 
relation between x and boiling point shown in Figure 1. A 
visual inspection may suggest that x gives a better correlation 
than ID number, but the estimated standard deviations (6.496 
and 6.746) and the correlation coefficients (0.9920 and 0.9914) 
are nearly identical. (From Figure 2 it is apparent that the 
ID number is deficient: it groups isomers, but each group is 
associated with too steep a slope if considered separately.) 
These results indicate what perhaps should have been antic- 
ipated: the examples in Table I1 are not necessarily optimal, 
and there may be considerable room for improvement. In this 
particular case the improvement is not necessarily a practical 
advantage, however, since the evaluation of paths is more 
involved and the simple additivity of bonds is lost. There is 
one somewhat arbitrary step in the construction of ID numbers 
that merits some scrutiny here. ID numbers are defined as 
the sum of all paths [with each bond m,n weighted by (mn)-'I2] 
plus the number of atoms, the latter viewed formally as paths 
of length zero. If we do not include this direct size factor and 
examine the regression of boiling point against (ID - n), where 
n is the number of carbon atoms, we obtain a result that is 
significantly less useful (the standard deviation of 13.25 and 
correlation coefficient of 0.949 are only marginally better than 
those of Win  Table 11). 

Both the connectivity index and the ID number have similar 
correlations, suggesting that perhaps the (mn)-1/2 weights are 
the essential common ingredient. From the empirical point 
of view one can question the form of these weights, which in 
fact arose from the multiplication of the atomic factors l /m1I2  
and 1 / n 1 / 2 ,  and ask if perhaps some other (related) forms may 

0.70 ' 

P 
8 

0 

- I ,  le I 1 I I 

2.88 6.00 8 .88  I 1 .e0 14.00 
MOLECULAR ID NUMBER 

Figure 2. Correlation between the observed boiling points of the C,-C, 
alkanes and the molecular ID numbers. 

not yield better regression results. One could either utilize 
different m,n values from those representing molecular graph 
valencies or use exponents other than - l I 2 .  We considered 
both approaches in order to examine the improvement or 
worsening of the regression that follows. We have not con- 
sidered simultaneous changes of both factors as such effects 
can be deduced, at least semiquantitatively, from the obser- 
vations for the cases considered. In Table I11 are the results 
obtained by replacing m and n with m - 1/2,  m (Table 11), m 
+ I / * ,  and m + 1 ,  revealing the following trend for the 
standard deviations: 9.532, 6.746, 5.748, and 5.201 (corre- 
lation coefficients parallel this trend). The improvement is 
rather substantial, which speaks for the flexibility of m,n 
values. For each of the above cases, one must first construct 
the bond weights (m,n) ,  shown in Table IV, and then derive 
the corresponding connectivity indices, which are shown in 
Table 111. From Table IV we observe that bond types (1,4) 
and (2,2), which are degenerate for x giving in both cases bond 
weights of 0.2500, now produce different weights for each of 
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Table IV. Bond Types and New Bond Weights for the Case in Table 111 

(m + ' t 2 ) ( n  + ' /d k = k = -It4 bond type (m - ' /d in  - ' /2 )  ( m  + ~ ) ( n  + 1) 
2.0000 0.6667 0.5000 1 .oooo 1 .oooo 
1.1547 
0.8944 
0.7559 
0.6667 
0.5164 
0.4364 
0.4000 
0.3381 
0.2857 

0.5 164 
0.4364 
0.3849 
0.4000 
0.3381 
0.2981 
0.2857 
0.2520 
0.2222 

0.4082 
0.3536 
0.3162 
0.3333 
0.2887 
0.2582 
0.2500 
0.2236 
0.2000 

0.7937 
0.6934 
0.6300 
0.6300 
0.5503 
0.5000 
0.4807 
0.4368 
0.3969 

0.8410 
0.7598 
0.7071 
0.7071 
0.6389 
0.5946 
0.5774 
0.5373 
0.5000 

the three cases considered. Moreover, the relative magnitudes 
of the (1,4) and (2,2) bond weights differ for the cases of 
decreasing m, for which (1,4) is greater than (2,2), and in- 
creasing m, for which (2,2) is greater than (1,4). Because the 
latter two cases give better agreement, we have to conclude 
that the accidental degeneracy of (1,4) and (2,2) when using 
x gives the (1,4) bond type a somewhat greater role than the 
experimental data would justify. From the above it is clear 
that changing m and n involves the recalculation of weights 
and hence the connectivity indices for the alkanes. We are 
interested in the best values possible, and the gradual change 
of m,n values (in steps of ' I2 )  is a tedious route to finding 
optimal values. Hence we used the above four values as four 
(m,s) coordinates, s being the standard deviation [(-OS, 
9.532); (0.0, 6.746); (0.5, 5.748); (1.0, 5.201)] and fitted a 
quadratic equation from which the minimum would suggest 
the optimal increment for m. The results indicated that the 
values of m + 1 (and n + 1) are optimal. Extrapolation to 
m + 3 / 2  gave a value of s = 6.1 12 for the standard deviation, 
and even small changes around 1 .O produced increases in the 
standard deviation: 0.9 gave s = 5.237 and 1.1 gave s = 5.349. 
Hence, the optimal modification was to increase m (the valency 
of the graph vertex) by 1. Speculation suggests that obtaining 
the optimal result by using an integer may have some struc- 
tural significance. However, when setting the rules for defining 
the weights, one is at liberty to introduce weights based on 
m or m + 1, from the a priori position both are equally ar- 
bitrary, and one is preferred to the other solely on the merits 
of the application. We do not wish at this stage to recommend 
one over the other; all that we claim here is that an additional 
degree of freedom exists, which, if used judiciously, may lead 
to improvements in structure-property correlations. 

The other flexibility in considering weights for (m,n) bond 
types is in the selection of the exponent k in (mn)k; this need 
not have the value -1 /2  as in the Randie index. In fact, Al- 
tenburg2' has already pointed out that x can be viewed as a 
special case of more general quantities that describe molecular 
branching 

x(k) = C(t,,)f k # 0 
I 

where i is the label for a bond E between atoms m and n and 
the summation is carried over all bonds. The value k = -lI2 
gives the connectivity index, while the value k = 1 gives an 
index used to approximate the s-electron energy of conjugated 
hydrocarbons.22 Altenburg has listed cases k = 1, +lI2, 
and -1 and found a relationship with the quadratic mean 
radius for small alkanes. We examined the cases k = -1/3 and 
k = - - I / +  In Tables I11 and IV are listed the new connectivity 
numbers and the new bond weights, respectively. Here the 
degeneracy of bond weights (1,4) and (2,2) remains (of ne- 
cessity), but we find that the standard deviation in both cases 
improves in comparison with the k = - 1 / 2  case. In fact, the 
case of k = with a standard deviation of 5.003, illustrated 
in Figure 3, represents the best result of all the alternatives 
of Tables I1 and 111. Combining the variations in m,n (Le., 
to m + 1, n + 1 )  and simultaneously changing k to one 
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Table V. Decomposition of the C2-C7 Alkanes into Their (m,n) Bond Types and the Best Fit of Their Boiling Points Obtained by Using 
h'"rica1h Derived Atom Factors a, 

bp, 'C bond-type count (A',,,") 
compound obsd calcd residual 1, 1 1, 2 1, 3 1, 4 2, 2 2, 3 2, 4 3, 3 3, 4 

0 ethane -88.63 -78.02 -10.61 1 0 0  0 0 0 
propane -42.07 -42.10 0.03 0 2 0 0 0 0 0 0 0 

0 2-methylpropane -11.73 -12.83 1.10 0 0 3 0 0 0 
n-butane -0.50 -6.14 5.64 0 2 0 0 1 0 0 0 0 
2,2-dimethylpropane 9.50 11.78 -2.28 0 0 0 4 0 0  0 0 0 
2-methylbutane 27.85 23.21 4.64 0 1 2 0 0 1 0 0 0 
n-pentane 36.07 29.82 6.25 0 2 0 0  2 0 0 0 0 
2,2-dimethylbutane 49.74 47.90 1.84 0 1 0 3 0 0 1 0 0 
2,3-dimethylbutane 57.99 52.74 5.25 0 0 4 0 0 0 0 1 0 
2-methylpentane 60.27 59.17 1.10 0 1 2 0 1 1 0 0 0 
3-methylpentane 63.28 59.26 4.02 0 2 1 0 0 2 0 0 0 

2,2-dimethylpentane 79.20 83.86 -4.66 0 1 0 3 1 0 1 0 0 
2,4-dimethylpentane 80.50 88.52 -8.02 0 0 4 0 0 2 0 0 0 
2,2,3-trimethylbutane 80.88 77.60 3.28 0 0 2 3 0 0 0 0 1 
3,3-dimethylpentane 86.03 84.02 2.01 0 2 0 2 0 0 2 0 0 
2,3-dimethylpentane 89.78 88.79 0.99 0 1 3 0 0 1 0 1 0 
2-methylhexane 90.05 95.13 -5.08 0 1 2 0 2 1 0 0 0 
3-methylhexane 91.85 95.22 -3.37 0 2 1 0 1 2 0 0 0 
3-ethylpentane 93.48 95.30 -1.82 0 3 0 0 0 3 0 0 0 
n-heptane 98.42 101.74 -3.32 0 2 0 0 4 0 0 0 0 

0 0  

0 0  

n-hexane 68.74 65.78 2.96 0 2 0 0 3 0 0 0 0 

correlation coefficient 0.9958 
estimated standard deviation 5.134 

a, = 6.192 a2 = 5.997 (1) = 5.573 a4 = 5.174 constant = -116.359 

+ 1)-lI2 and m-1/3 were computed, yielding linear correlation 
coefficients of 0.9049, 0.9412, and 0.9177, respectively. (It 
should be noted that if ethane was excluded from the set, in 
view of its unique status, these same correlations yielded the 
values 0.9991, 0.9906, and 0.9974, respectively, and an esti- 
mated standard deviation of 3.624, the latter demonstrating 
the major contribution of ethane to the total error.) Before, 
however, trying to seek possible structural factors that may 
be responsible for larger deviations [such as has been possible 
in the case of the correlation of the chromatographic retention 
indices23 with the connectivity, when the presence of large 
numbers of paths of length 3 between terminal (primary) 
carbon atoms could account for the discrepancies] we will seek 
additional single-variable descriptors but relax the constraint 
that the regression be linear. Figure 1 points to limitations 
of the linearity assumption, as one can see that all three initial 
descriptors, x, W, and 2, give useful correlations but with 
increasing curvature. 

SEARCH FOR FUNCTIONAL FORM 

There are essentially two alternative routes in the search 
for a nonlinear functional form for a correlation: (1) one can 
apply various simple transformations, or (2) one can use 
polynomial expansions. We will examine both approaches, 
as they supplement one another and reinforce our conclusions. 
We start with selecting various simple nonlinear forms for the 
same descriptors as already considered. Table VI summarizes 
these results. For both the connectivity index x and the Wiener 
number W, we examined the square, cube, fourth, and fifth 
roots using simple linear regression, and substantially improved 
correlations were obtained. As measured by the standard 
deviation of 2.825, the x113 model was the best single-descriptor 
model developed in this study, and the x114 model gave nearly 
indistinguishable results. The high standard deviation of 17.09 
(Table 11) yielded by W itself dropped successively to 8.12 for 
vi2, to 5.08 for W'/3 ,  and finally to 4.42 for before 
climbing to 4.60 for W1I5. Hence for both x and W the 
standard deviation dropped significantly below 5.000, the 
previous limit approached by both the empirical fit and the 
modified connectivity based on k = Observe that up to 
this point the best correlations have been associated with the 

Table VI. Summary of the Results: the Correlation Coefficients ( r )  
and Standard Deviations (s) for Various Single-Parameter Linear 
Regressions Based on Variations of the Connectivity Index, ID 
Number, Wiener W Number, and Hosoya 2 Topological Index 

descriptor correlation coefficient standard deviation 
x l / 2  0.9979 3.364 
x ~ / 3  0.9985 2.825 
x 1 / 4  0.9985 2.835 
X I I S  0.9983 2.939 
w' 12 0.9875 8.119 
P I 3  0.9951 5.082 
P I 4  0.9963 4.417 
w'/5 0.9960 4.602 
Z2 0.8092 30.22 
2 1 1 2  0.9591 14.56 
2 1 1 3  0.9717 12.15 
Z-' 0.9758 11.23 
z-w 0.9967 4.192 
z-v 0.9976 3.547 
2 - 1 1 4  0.9969 4.040 
ID2 0.9677 12.96 
ID'/2 0.9939 5.658 
1 ~ 1 1 3  0.9922 
(2 - 1)-'/2 0.9810 
(Z + 1)-,12 0.9971 
(2 + 2)-1/* 0.9942 
(2 + 3)4/2 0.9907 

6.406 
9.955 
3.930 
5.485 
6.986 

cube and quartic roots. This may or may not be significant. 
In the case of W, one should recall the work of Platt,6 who 
interpreted Was a measure of volume, suggesting that the cube 
root of W can be considered a measure of linear dimension. 
By linear, of course, we do not mean to imply simple molecular 
length but what might correspond to (in a very loose sense) 
an average length of a three-dimensional molecule. 

In a similar manner, we also examined Hosoya's Z number. 
Numerous works of Hosoya and  collaborator^^^ demonstrate 
the usefulness of this index in the considerations of properties, 
suggesting that the index is probably much better than evi- 
denced by the standard deviation shown in Table 11. We 
considered Z2,  Z'I2, Z'13, Z-l, Z-'13, and The 
results are collected in Table VI. Clearly, those forms with 
positive exponents are not nearly as successful as those com- 
puted by using negative roots. The standard deviation of 3.55 
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yielded by Z-IJ3 is the lowest value, representing a drop of over 
80% from the original value of 21 .O, and an even better result 
than obtained by using vi4. Figure 4 testifies to the good 
linearity of the Z-1/3 correlation. 

With the molecular ID number a similar approach reduced 
the standard deviation from the original 6.496 to 5.658 by 
using ID112. Although a significant decrease, the end result 
did not approach those obtained for the other indices when 
this strategy was applied. This is perhaps not surprising, 
however, considering the nature of the correlation of boiling 
point with ID number as revealed by Figure 2. 

In summary, we found that all the indices considered here, 
the connectivity x, ID, modified connectivity with k = -1/3, 

vi3, VI4, and finally . P i 3  give very good standard deviations 
for the sample examined. We have not exhausted all simple 
forms, and from what we have seen further possibilities emerge 
as worthy of testing. The end of Table VI shows one such 
possibility based on the Hosoya Z index: by increasing (or 
decreasing) Z by integers, we can test the form 1/(Z + q) lJ2 ,  
and we find that the standard deviation drops to 3.930 when 
q = 1, which reminds us of the case of the variation in m, 
where again m + 1 gave the best result. We conclude, 
therefore, that all the above-mentioned indices deserve full 
attention in structure-property and structure-activity studies 
and may be viewed as extensions of our coordinate systems 
to additional forms. 

RANDIC ET AL. 

CONCLUDING THE SEARCH 

The number of functional forms is unlimited, and one may 
argue that sooner or later one is going to hit the best scheme 
and for this reason one may tend to devaluate our results. In 
defending our approach, we wish to emphasize that we re- 
stricted our attention to simple transformations, involving 
integer and fractional powers, and translations (i.e., linear 
increments) that were limited to integers or simple fractions. 
The search for additional forms is legitimate, but in our view 
the first matter of business, now that we have opened the pool 
of invariants, would be to see how they work on larger samples 
and different properties. In order to strengthen our findings, 
we examined the graph theoretical indices and their best 
transformations by the alternative route of using a power 
expansion. If the functional form is optimal, then the power 
series will converge quickly, and the higher polynomial terms 
will result in little improvement. Conversely, if the functional 
form is poor, the addition of higher power terms will make 
significant improvements in the correlation coefficient and the 
standard deviation. Along these lines, we tested x, ID, W, and 
2, the latter two in particular displaying appreciable departure 
from linearity (see Figures 1 and 2 ) .  Table VI1 summarizes 
our results. For x the addition of a single term (x2) reduced 
the standard deviation by more than half to 2.93 (one of the 
lowest values obtained in this study), but further expansion 
resulted in no better fit. For both Wand Z the addition of 
quadratic and cubic terms resulted in substantial improvements 
in the standard deviations to 6.55 and 6.64, respectively, from 
their original values of 17.1 and 21.0 (Table 11). Attempts 
to expand these polynomials further resulted in computational 
problems arising from matrix near-singularity caused by the 
high intercorrelation of the polynomial terms. In contrast, 
expansion of the molecular ID number expression resulted in 
a reduction of the standard deviation of less than 15%. This 
is perhaps not surprising in view of the very slight curvature 
observed in the boiling point versus ID number plot of Figure 
2. Hence the molecular ID number appears to possess an 
optimal form without expansion or transformation. 

To further test this method, we also considered the poly- 
nomial expansions of the optimal forms of x, W, and Z (as 
shown in Table VI), that is, x ' / ~ ,  Wi4,  and Z-' /3 .  In each of 
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Figure 4. Correlation between the observed boiling points of the C2-C 
alkanes and the optimum forms of the topological indices: (a) 
(x bein the RandiE index, also called the molecular connectivity); 
(b) wf4 (W being the Wiener number); and (c) Z-'I3 ( Z  being 
Hosoya's index). 
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Table VII. Correlation Coefficients and Standard Deviations for 
Polynomial Regressions for Selected Graph Invariants versus Boiling 
Points of Small Alkanesa 

leading term correlation coefficient standard deviation 
Randit Index ( x )  

X 0.9914 6.746 
X 2  0.9985 2.929 
X' 0.9985 2.962 
x v 3  0.9985 2.825 
x2 i3  0.9985 2.879 

Wiener Number (w) 
W 0.9432 17.09 
w2 0.9866 8.615 
W' 0.9927 6.548 
w l f 4  0.9963 4.417 
Wf4 0.9963 4.533 

Hosoya Index (Z) 
Z 0.9128 21.01 
22 0.9816 10.10 
Z' 0.9925 6.644 
z-113 0.9976 3.547 
~ - 2 1 3  0.9977 3.591 

Molecular ID Number 
ID 0.9918 6.565 
ID2 0.994 5.644 
ID' 0.994 5.760 

Modified Connectivity (x') (k = 
X' 0.9953 5.003 
X I 2  0.9987 2.721 
Y" 0.9987 2.762 

"The "leading term" entries in the table refer to the highest power 
used in each polynomial regression. For example, Z3 refers to the fit- 
ting of a cubic equation. 

the three expansions the addition of a quadratic term resulted 
in no improvement in correlation, evidenced by slight increases 
in the standard deviations. In view of the linearity observed 
in Figure 4, one might have expected these results. Finally, 
we tested the modified connectivity index based on k = -I f  3. 

The addition of a quadratic term to this model yielded the best 
correlation obtained in this study (see Figure 5 ) .  The initial 
standard deviation of 5.003 (obtained from simple linear re- 
gression) was further reduced to 2.721. 

CONCLUDING REMARKS 

Structural invariants are essential for structure-property 
or structure-activity studies, and they are of potential interest 
in many empirical studies, such as pattern recognition and 
clustering. It is perhaps not too difficult to introduce additional 
structural invariants, but what may be more difficult than 
anticipated is to arrive at  new invariants that have novel 
different structural bases and cannot be simply (if not trivially) 
related to those already existing. In this paper we reconsidered 
several important structural invariants, in particular x, W, 2, 
and ID numbers, and examined some derivatives of these by 
relaxing the constraints on their functional form. Visible 
improvements have been reported for all the invariants con- 
sidered, suggesting further testing for x'l3, W'I4, and Z-'f3, 
and also for modified connectivity indices using m + 1 and 
n + 1 instead of m,n in (mn)-'/* as well as (mn)-1/3.  The last 
case produced, in a quadratic polynomial, the overall best 
fitting, while x1l3 gave the best single-term, linear regression. 

The emphasis in this paper is on the strategies to be used 
in the searches for new invariants, not on proposing alternatives 
to the existing indices. Such replacements may follow should 
the present results survive more critical tests of time and wider 
applications beyond the sample considered here. However, 
we feel that even when one is limited to small subsets of 
structures, modifications of the parameters and invariants are 
legitimate, in particular since they can reduce the number of 
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Figure 5. Best correlation of this study based on a quadratic rela- 
tionship of the boiling points of the C2-C7 alkanes and the modified 
molecular connectivity with k = - * / g  (e.g., bp = U X ' ~  + bx' + c) .  

indices or expansion terms used. The connectivity index, which 
has seen such broad application, has been frequently combined 
with its reciprocal, l/x, and higher connectivity indices, m ~ ,  
and the present study suggests an additional approach for 
testing published correlations and regressions to see if they may 
also suggest other fewer term representations and reveal im- 
portant modifications that are currently hidden in the re- 
strictive use of these topological indices. 
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Chemical Abstracts Service staff trained 88 Imperial Chemical Industries chemists to use CAS 
ONLINE over a 2-year period in a cooperative experiment between the two organizations. The 
effectiveness of the training, the problems encountered by end-users, the usage made of CAS 
ONLINE, the impact of end-user searching on information scientists, and the attitudes of 
management were studied. 

BACKGROUND 

Late in 1982, after 10-years’ experience of online interactive 
searching by IC1 information scientists and librarians, one of 
us gave a paper that stated categorically that the end-user will 
search online.’ This opinion was just beginning to obtain 
credence in the l i t e r a t ~ r e . ~ - ~  However, the IC1 view was 
mainly based on developments within the company in which 
a policy was being introduced to allow scientists, and others, 
to access internal company databases themselves, interactively, 
without the intervention of an intermediary who would in- 
terrupt the flow of scientific thought6 It was recognized that 
given suitable terminal and network facilities, most scientists 
would also wish for direct access to the external databases, 
representing the published literature. 

However, at that time, the online search services were even 
less “user-friendly” and the telecommunication links less re- 
liable than today. It was recognized that mastery of the 
intricacies of successful searching took time, training, and 
experience to acquire. There was top management concern 
relating to the costs involved in both the end-user scientist’s 
time spent searching and the actual online charges. In ad- 
dition, management was concerned about the mechanisms for 
managing this new online information resource, in that a 
free-for-all approach, in effect an open check, was not an 
acceptable policy. The information scientists were worried that 
their knowledge and skill in accessing online services would 
no longer be required. 

Other companies have considered the same  issue^.^^^ 
INITIATION OF THE IC1 CAS ONLINE 

COOPERATIVE EXPERIMENT 
Informal discussions were started with Chemical Abstracts 

Service (CAS) in 1984. IC1 felt that chemists were the most 
suitable end-users to be trained first because they already had 
significant experience of using an in-house, interactive system,6 
and their needs for external information could be substantially 
met by access to the online databases provided by CAS. IC1 
information scientists were accessing these databases under 
DARC9 and CAS ONLINEio in the ratio of about 1 to 2 in 
cost terms, but the company wished to train chemists in one 

Manager. 
1 Former Manager 

system only. The likely development of both search services 
was an important issue, but the offer by CAS to train groups 
of IC1 chemists to use CAS ONLINE helped to clinch the 
matter. 

JOINT CAS AND IC1 OBJECTIVES FOR THE 
COOPERATIVE EXPERIMENT 

The aim of the cooperative experiment between CAS and 
IC1 was to gather information on end-user chemists’ needs and 
usage of CAS ONLINE. The results would, it was hoped, 
assist CAS in their developments and marketing of CAS 
end-user chemists’ to industry and would assist IC1 in the 
provision and management within the company of CAS ON- 
LINE as a resource to chemical innovation and chemistry in 
general. The joint specific objectives of CAS and IC1 were 
as follows: 

(1) To determine how effective CAS training was for both 
end-users and the information scientists who supported them 
and to assess the appropriateness of related documentation and 
user manuals. 

(2) To find what problems end-users encounter. 
(3)  To determine the number and type of searches done by 

(4) To study the effectiveness of end-user searching. 
( 5 )  To determine the types of searching problems that cause 

an end-user to seek help from an information scientist. 
(6) To study the reaction of information scientists to end- 

user searching. 
(7) To study IC1 management reaction, including the 

opinions of both chemistry and information managers on the 
cost effectiveness of end-user searching and the developments 
needed from CAS if further progress were to be made. 

(8) To learn how CAS might better serve the needs of 
end-user scientists. 

an average end-user. 

MAIN TERMS OF THE COOPERATIVE EXPERIMENT 

The experimental period was 25 months from December 
1984 to December 1986. The main terms were as follows: 

(1) IC1 was to make two advance lump-sum payments to 
the Royal Society of Chemistry (U.K. marketing agent for 
CAS ONLINE) against the use of CAS ONLINE by IC1 in 
the U.K. 

0095-2338/88/1628-0068$01.50/0 0 1988 American Chemical Society 


